About This Blog

Hai para sahabat blogger !!!
Bagi anda ingin mencari kumpulan artikel mengenai IT & Electronica Knowledge.
Disinilah Tempatnya, Blog ini mungkin bisa membantu anda.Sebab Blog ini memuat berbagai kumpulan artikel-artikel tentang IT & pengetahuan Elektronika yang diambil dari berbagai media.
Dan bila anda punya kritik & saran ataupun pendapat about this Blog silahkan anda salurkan pada tempat yang telah disediakan.Selain itu jika anda ingin menambahkan artikel-artikel lainnya yang sesuai tema Blog ini,anda dapat mengirimkannya ke alamat: Abhe.MokletXv@gmail.com.
Sering-sering aja yach! mengunjungi Blog ini.Thanks.
Blog ini dibuat pada tanggal 29 Agustus 2007.



Created By : Abhe

Electronics

Meaning

Electronics is the study of the flow of charge through various materials and devices such as, semiconductors, resistors, inductors, capacitors, nano-structures, and vacuum tubes. All applications of electronics involve the transmission of power and possibly information. Although considered to be a theoretical branch of physics, the design and construction of electronic circuits to solve practical problems is an essential technique in the fields of electronics engineering and computer engineering.

The study of new semiconductor devices and surrounding technology is sometimes considered a branch of physics. This article focuses on engineering aspects of electronics. Other important topics include electronic waste and occupational health impacts of semiconductor manufacturing.

Electronics theory

Mathematical methods are integral to the study of electronics. To become proficient in electronics it is also necessary to become proficient in the mathematics of circuit analysis.

Circuit analysis is the study of methods of solving generally linear systems for unknown variables such as the voltage at a certain node or the current though a certain branch of a network. A common analytical tool for this is the SPICE circuit simulator.

Also important to electronics is the study and understanding of electromagnetic field theory.

Minggu, 09 September 2007

Transistors

Function

Transistors amplify current, for example they can be used to amplify the small output current from a logic chip so that it can operate a lamp, relay or other high current device. In many circuits a resistor is used to convert the changing current to a changing voltage, so the transistor is being used to amplify voltage.

A transistor may be used as a switch (either fully on with maximum current, or fully off with no current) and as an amplifier (always partly on).

The amount of current amplification is called the current gain, symbol hFE. For further information please see the Transistor Circuits page.

Types of transistor

There are two types of standard transistors, NPN and PNP, with different circuit symbols. The letters refer to the layers of semiconductor material used to make the transistor. Most transistors used today are NPN because this is the easiest type to make from silicon. If you are new to electronics it is best to start by learning how to use NPN transistors.

The leads are labelled base (B), collector (C) and emitter (E).These terms refer to the internal operation of a transistor but they are not much help in understanding how a transistor is used, so just treat them as labels!

A Darlington pair is two transistors connected together to give a very high current gain.

In addition to standard (bipolar junction) transistors, there are field-effect transistors which are usually referred to as FETs. They have different circuit symbols and properties and they are not (yet) covered by this page.

Connecting

Transistors have three leads which must be connected the correct way round. Please take care with this because a wrongly connected transistor may be damaged instantly when you switch on.

If you are lucky the orientation of the transistor will be clear from the PCB or stripboard layout diagram, otherwise you will need to refer to a supplier's catalogue to identify the leads.

The drawings on the right show the leads for some of the most common case styles.

Please note that transistor lead diagrams show the view from below with the leads towards you. This is the opposite of IC (chip) pin diagrams which show the view from above.

Soldering

Transistors can be damaged by heat when soldering so if you are not an expert it is wise to use a heat sink clipped to the lead between the joint and the transistor body. A standard crocodile clip can be used as a heat sink.

Do not confuse this temporary heat sink with the permanent heat sink (described below) which may be required for a power transistor to prevent it overheating during operation.

Heat sinks

Waste heat is produced in transistors due to the current flowing through them. Heat sinks are needed for power transistors because they pass large currents. If you find that a transistor is becoming too hot to touch it certainly needs a heat sink! The heat sink helps to dissipate (remove) the heat by transferring it to the surrounding air. For further information please see the Heat sinks page.

Testing a transistor

Transistors can be damaged by heat when soldering or by misuse in a circuit. If you suspect that a transistor may be damaged there are two easy ways to test it:
1. Testing with a multimeter

Use a multimeter or a simple tester (battery, resistor and LED) to check each pair of leads for conduction. Set a digital multimeter to diode test and an analogue multimeter to a low resistance range.
Test each pair of leads both ways (six tests in total):

· The base-emitter (BE) junction should behave like a diode and conduct one way only.
· The base-collector (BC) junction should behave like a diode and conduct one way only.
· The collector-emitter (CE) should not conduct either way.

The diagram shows how the junctions behave in an NPN transistor. The diodes are reversed in a PNP transistor but the same test procedure can be used.

2. Testing in a simple switching circuit

Connect the transistor into the circuit shown on the right which uses the transistor as a switch. The supply voltage is not critical, anything between 5 and 12V is suitable. This circuit can be quickly built on breadboard for example. Take care to include the 10k resistor in the base connection or you will destroy the transistor as you test it!

If the transistor is OK the LED should light when the switch is pressed and not light when the switch is released.

To test a PNP transistor use the same circuit but reverse the LED and the supply voltage.

Some multimeters have a 'transistor test' function which provides a known base current and measures the collector current so as to display the transistor's DC current gain hFE.

Transistor codes

There are three main series of transistor codes used in the UK:

1. Codes beginning with B (or A), for example BC108, BC478
The first letter B is for silicon, A is for germanium (rarely used now). The second letter indicates the type; for example C means low power audio frequency; D means high power audio frequency; F means low power high frequency. The rest of the code identifies the particular transistor. There is no obvious logic to the numbering system. Sometimes a letter is added to the end (eg BC108C) to identify a special version of the main type, for example a higher current gain or a different case style. If a project specifies a higher gain version (BC108C) it must be used, but if the general code is given (BC108) any transistor with that code is suitable.

2. Codes beginning with TIP, for example TIP31A
TIP refers to the manufacturer: Texas Instruments Power transistor. The letter at the end identifies versions with different voltage ratings.

3. Codes beginning with 2N, for example 2N3053
The initial '2N' identifies the part as a transistor and the rest of the code identifies the particular transistor. There is no obvious logic to the numbering system.

Choosing a transistor

Most projects will specify a particular transistor, but if necessary you can usually substitute an equivalent transistor from the wide range available. The most important properties to look for are the maximum collector current IC and the current gain hFE. To make selection easier most suppliers group their transistors in categories determined either by their typical use or maximum power rating. To make a final choice you will need to consult the tables of technical data which are normally provided in catalogues. They contain a great deal of useful information but they can be difficult to understand if you are not familiar with the abbreviations used. The table below shows the most important technical data for some popular transistors, tables in catalogues and reference books will usually show additional information but this is unlikely to be useful unless you are experienced.

1 komentar:

rahmad mengatakan...

kalau bisa artikelnya juga bahasa indonesia